skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Yingxue"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Nanoparticle reinforcement is a general approach toward the strengthening of elastomer nanocomposite in large‐scale applications. Extensive studies and efforts have been contributed to demonstrating the property reinforcement of polymer nanocomposites in relation to matrix‐filler and filler‐filler interaction. Here, a facile synthetic method is creatively reported to synthesize SiO2,15/120‐g‐polyisoprene (SiO2‐g‐PI) particle brushes using atom transfer radical polymerization (ATRP). The dispersion and microstructures of the nanoparticles in the nanocomposites are investigated by morphological characterizations, whereas the reinforcing mechanism is studied through mechanical measurements as well as computational simulation. Remarkably, compared with the cured bulk elastomers and matrix(M)/SiO2blends, M/particle brushes (PB) exhibit significant improvement in mechanical properties, including tensile strength, elongation at break, modules, and rolling resistance. This elastomer nanocomposites afford a novel prospect for the practical application of next‐generation automobile tires with enhanced performance. 
    more » « less